Tetrahedron Letters No. 46, pp 4435 - 4438, 1971. Pergamon Press. Printed in Great Britain.

REDUCTION OF OLEFINS AND ACETYLENES BY MEANS OF FORMIC ACID AND FORMATES IN PRESENCE OF TRANSITION METALS COMPLEXES.

M.E.Vol'pin, V.P.Kukolev, V.O.Chernyshev and I.S.Kolomnikov.

Institute of Organo-Element Compounds, Academy of Science, Moscow, USSR. (Received in UK 12 July 1971; accepted for publication 15 October 1971)

Transition metal complexes are known as the effective catalysts of the molecular hydrogen activation and olefins hydrogenation. However catalysis of hydrogen transfer from organic compounds to unsaturated substrates has been studied in less detail. Only the reduction of olefins by alcohols and alcoholates has been described (I,2). From this point of view formic acid and its salts may be rather interesting and promising hydrogen donors, due to the high hydride mobility of C-H hydrogen.

We found that many transition metal complexes are effective catalysts of reduction of olefins and acetylenes by formic acid and formates. The catalytic activities of various ruthenium, osmium, rhodium, platinum and palladium complexes were investigated.

As seen from Table I the majority of the compounds investigated are effective catalysts of the olefin reduction by formic acid. The triphenylphosphine complexes of ruthenium, rhodium and iridium (Ph₃P)₄RuCl₂, (Ph₃P)₃RhCl, (Ph₃P)₂Rh(CO)Cl, (Ph₃P)Rh(CO)₂Cl, (Ph₃P)₂Ir(CO)Br, (Ph₃P)₃Ir(CO)H, (Ph₃P)₂IrH₂Cl were found to be most active at IO0°C.At 60° only (Ph₃P)₃RhCl, (Ph₃P)₂Ir(CO)₂H, (Ph₃P)₄RuCl₂ possess any noticeable catalytic activities.

Addition of alkali metal formates increases the degree of reduction. Thus the mixture of formic acid and lithium formate reduced octene-I to octane quantitatively even at 40° in presence of (Ph₃P)₃RhCl.Similar results were obtained with HCOONa and HCOOK additives.In some cases the alkali metal formates alone (without HCOOH) reduced olefins in the presence of a trace of water (see Table I).

^{*}Coffey (3) observed the reduction of butyraldehyde to the alcohol with formic acid in the presence of transition metal complexes.

The reduction of various olefins and acetylenes (cf. Table 2) could be in some cases employed for preparative purposes.

Formic acid decomposition in the presence of transition metal compounds seems to proceed with formation of intermediate hydride complexes (4). These intermediates could either decompose to form H_2 and CO_2 or react with unsaturated substrate leading to its reduction. A possible pathwey of the reaction described could be represented by following scheme (M-metal, L-ligand):

$$L_{x}M + HCOOH - L_{x}MH_{2} + CO_{2} \rightarrow H + L_{x}M$$

Table I. Reduction of octene-I by means of formic acid and lithium formate.

Catalyst	t [°] C		Reduction %		
		HCOOH a	HCOOH + HCOOLi ^b	HCOOLi ^C	
RuCl ₃ •3H ₂ 0	6 0	0	I	I	
	100	14	60	55	
(Ph3P)3RuH(CO)C1	60	0	42	21	
	100	3	7	23	
(Ph3P)4RuCl2	60	55	I	I	
	100	45	26	27	
Ph3P)4RuH2	60 100	14 10	54 51	20 16	
(Ph ₃ P) ₃ 0sH(CO)C1	60	I	I	45	
	100	8	18	52	
RhC13•3H20	60	0	12	20	
	100	I	14	13	
(Ph ₃ P) ₂ Ir(CO)Cl	60	IO	16	16	
2	100	I4	50	4I	
Ph3P)2Ir(CO)Br	60 100	12 100	26 55	26 46	
Ph3P)2Ir(CO)J	60 I00	I 29	6 50	2 46	
(PnzP)zIrH5	60	0	0	0	
	100	15	9	2	
(Ph3P)3Ir(CO)H	60	0	0	0	
	100	0	0	0	

4437

Catalyst	t ^o C	Reduction %		
		HCOOHa	HCOOH + HCOOLib	HCOOLic
(Ph ₃ P) ₂ Ir(CO) ₂ H	60	16	16	5
/	100	52	50	33
(PhzP) ₂ Rh(CO)Cl	60	2	63	2
) 2	100	37	33	2
(PhzP)Rh(CO) ₂ C1	60	15	58	9
3 2	100	40	67	42
(Ph-P)-Rh(CO)H	60	8	27	4
-3 -3	100	42	27	8
(Ph3P)3RhCl	25 40 60 100	- 2 15 50	15 100 100 67	- 15 25
H ₂ PtCl ₆ + SnCl ₂	60	0	5	2
	100	2	2	2
(PhzP)zIrH ₂ Cl	60	4	0	9
)) ²	100	67	53	22
(Ph3P)3IrHC12	60	0	12	2
	100	37	5	15
(Ph_P)_Ir(CO)HCl_	60	0	0	0
5 Z Z	100	0	6	24
(PhO) _z P] ₄ IrH	60	0	0	0
· · · · · ·	100	3	38	9
cis-(Et _z P) ₂ PtCl ₂	60	0	5	0
, , , , , , , , , , , , , , , , , , , ,	100	12	2	19

a.Octene-I (IO-I5 mmole), HCOOH and the catalyst (molar ratio 30:IOO:I) in I ml. of DMF (or dimetylacetamide) were heated for 3 hr with subsuquent GLC analysis. b. Molar ratio of octene-I: HCOOH : HCOOLi*H₂O : catalyst = 30:IOO:30:I.

c.Molar ratio of octene-I : HCOOLi H₂O: catalyst = 30:60:I.

Reduction of olefins and acetylenes by means of formic acid in the presence of $(Ph_2P)_3RhCl$ (at $60^{\circ}C)_{\bullet}$

Substrate	Reduction product	Reduction %	
		HCOOH	HCOOH+ HCOOLID
octene-I	octane	15	100
octene-4	octane	7	100
heptene-I	heptane	25	70
cyclohexene	cyclohexane	8	58
hexyne-3	hexane	1 2	24
phenylacetylene	ethylbenzene	0	17

a. I ml. DMF; substrate, HCOOH and catalyst (molar ratio of 30:100:1) were heated for 3 hr. with subsuquent GLC analysis.

b. Molar ratio of substrate: HCOOH: HCOOLi · H₂O : catalyst =30:100:30:1.

References.

I.G.Gregorio, G.F. Pregaglia and R.Ugo, Inorg. Chim. Acta 3,89(1969).

2.I.S.Kolomnikov,I.L.Nakhshunova,F.Prukhnik,N.A.Belikova and M.E.Vol'pin, Izv. Akad. Nauk USSR,Ser.Khim. (in press).

3.R.S.Coffey, Chem.Commun., 923(1967).

4.L.Marangoni,A.Andreetta,G.F.Pregaglia andG.F.Ferrari, la Chimica e l'Industria, <u>52</u>,862(1970).